icon nav

Probability (II)

The Cumulative Distribution Function
  • Probability Theory
  • Mathematics

3.2.1 The Cumulative Distribution Function

Definition 3.10

The cumulative distribution function (CDF) of a random variable X is a function F_X : \mathbb{R} \rightarrow [0,1] given by F_X(x) = P(X \leq x), \forall x \in \mathbb{R}

Example 3.9: Say we toss a coin twice. Let X be the number of heads we observe. Find the CDF of X.

Solution: Notice that X \sim \text{Binomial} \left(2,\frac{1}{2} \right) with range R_X - \{0,1,2\} and a probability mass function given by: P_X(0) = P(X=0) = \frac{1}{4} P_X(1) = P(X=1) = \frac{1}{2} P_X(2) = P(X=2) = \frac{1}{4} To find the CDF, we first note that if x<0 then F_X(x) = P(X \leq x) = 0 We can also see that for x \geq 2, F_X(x) = P(X \leq x) = 1 Now we need to consider the values that lie between 0 and 2. If 0 \leq x < 1, X \leq x implies that X can only take the value 0. Therefore: F_X(x) = P(X \leq x) = P(x=0) = \frac{1}{4} for 0 \leq x < 1.

Similarly, for 1 \leq x < 2, F_X(x) = P(X \leq x) = P(x=0) + P(X=1) = \frac{3}{4}. Putting all of these together we get

F_X(x) =  \begin{cases}<br>0 &  x < 0\\[10pt]<br>\dfrac{1}{4} &  0 \leq x < 1\\[10pt]<br>\dfrac{3}{4} &  1 \leq x < 2 \\[10pt]<br>1  &  x \geq 2<br>\end{cases}

 

Notice that we’ll always have \lim_{x \rightarrow -\infty} F_X(x) = 0 and \lim_{x \rightarrow \infty} F_X(x) = 1

Theorem: Given that X is a random variable with probability mass function P_X(x) and cumulative distribution function F_X(x),



(a) For all a \leq b, we have P(a < X \leq b) = F_X(b) - F_X(a) (b) For any x, we have P(X<x) = P(X \leq x) - P(X=x) = F_X(x) - P_X(x)

Example 3.10: Let X be a discrete random variable with range R_x = \{1,2,3,...\}. Suppose the probability mass function of X is given by P_X(x) = \frac{1}{2^k}, \quad k=1,2,3,... (a) Find and plot the cumulative distribution function of X



(b) Find P(2 < X \leq 5)



(c) Find P(X>4)



Solution: First let’s verify that P_X(x) is indeed a probability mass function. \sum_{k=1}^{\infty}P_X(k) = \sum_{k=1}^{\infty}\frac{1}{2^k} = \frac{1}{2} \left(\frac{1}{1-\frac{1}{2}} \right) = 1 Now onto the problem:



(a) Since the range begins at 1, we have F_X(x) = 0 for x < 1.



Now, let k \leq x < k+1 for any k in \{1,2,3,...\}. F_X(x) = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... + \frac{1}{2^k} = \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{2^2} + ... + \frac{1}{2^{k-1}} \right) = \frac{1}{2} \left( \frac{1- \frac{1}{2^k}}{1-\frac{1}{2}} \right) = 1 - \frac{1}{2^k} = \frac{2^k-1}{2^k}



So we have: F_X(x) =  \begin{cases}<br>0 &  x < 1\\[10pt]<br>\dfrac{2^k-1}{2^k} &  k \leq x < k+1<br>\end{cases} (b) Using the above theorem, P(2 < X \leq 5) = F_X(5) - F_X(2) = \frac{2^5-1}{2^5} - \frac{2^2-1}{2^2} = \frac{7}{32} (c) P(X>4) = 1 - F_X(4) = 1 - \frac{15}{16} = \frac{1}{16}

3.2.2 Expectation

Definition 3.11: Let X be a discrete random variable with range R_X = \{x_1, x_2, x_3,...\}. The expected value of X, denoted EX, is defined as EX = \sum_{x_k \in R_x} x_k P(X=x_k) = \sum_{x_k \in R_x} x_k P_X(x_k) The expected value may be written using several different notations which are all equivalent: EX = E[X] = E(X) - \mu _x

Example 3.11: Let X \sim \text{Bernoulli}(p). Find EX.



Solution: EX = 0 \cdot P_X(0) = 1 \cdot P_X(1) = 0 \cdot (1-p) = 1 \cdot p = p Hence, EX = p.



Example 3.12: Let X \sim \text{Geometric}(p). Find EX.



Solution: EX = \sum_{k=1}^{\infty} x_k q^{k-1}p = \sum_{k=1}^{\infty} k q^{k-1}p = p \sum_{k=1}^{\infty} k q^{k-1} \stackrel{(*)}{=} p \frac{1}{(1-q)^2} = \frac{p}{p^2} = \frac{1}{p} Hence, EX = \dfrac{1}{p}.



(*) We know that \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} if |x| < 1. Differentiating both sides we get \frac{d}{dx} \sum_{k=0}^{\infty} x^k =  \frac{d}{dx} \frac{1}{1-x} \sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1-x)^2}

Example 3.13: Let X \sim \text{Poisson}(\lambda). Find EX.



Solution: EX = \sum_{x_k \in R_x} x_k P_X(x_k) = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{ \lambda^k}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{ \lambda^k}{k!} = \lambda e^{-\lambda} e^{\lambda} = \lambda Hence, EX = \lambda.



Theorem 3.2: The expected value has the following properties:



(a) For any random variable X and a, b \in \mathbb{R} E[aX+b] = aEX + b (b) Given any number of random variables X_1, X_2,....X_n, which may or may not be independent, E[X_1 + X_2 + ... + X_n] = EX_1 + EX_2 + ... + EX_n

Example 3.16: Let X \sim \text{Binomial}(n,p). Find EX.



Solution: We know that for a binomial distribution, X = X_1 + X_2 + ... + X_n where X_i \sim \text{Bernoulli}(p) are independent random variables. So we can write: EX = E[X_1 + X_2 + ... + X_n] = EX_1 + EX_2 + ... + EX_n = p + p + ... + p = np Hence, EX = np.



Example 3.15: Let X \sim \text{Pascal}(m,p). Find EX.



Solution: In this case, we also have a sum X = X_1 + X_2 + ... + X_m where X_i \sim \text{Geometric}(p). So we have: EX = \sum_{k=1}^m EX_k = \sum_{k=1}^m \frac{1}{p} = \frac{m}{p} Hence EX = \dfrac{m}{p}.

3.2.3 Functions of Random Variables

Let X be a random variable and define Y=g(X) to be a function of that random variable. Now, Y itself is also a random variable. So it makes sense to discuss things like the probability mass function, cumulative distribution function, and expected value of this function.



To start off, the range of Y will be R_Y = \{g(x) : x \in R_X\} and we can write P_Y(y) = P(Y=y) = P (g(x) =y) = \sum_{x : g(x) = y} P_X(x)

Example 3.16: Let X be a discrete random variable with P_X(k) = \dfrac{1}{5}, \quad k = -1, 0, 1, 2, 3. Let Y = 2|X|. Find R_Y and the probability mass function of Y.



Solution: R_Y = \{2|X| : x \in R_X \} = \{0,2,4,6\} Now, to find the PMF: P_Y(0) = P(Y=0) = P(2|X| = 0) = P(X=0) = \frac{1}{5} P_Y(2) = P(Y=2) = P(2|X| = 2) = P(X=-1) + P(X=1) = \frac{2}{5} P_Y(4) =  P(2|X| = 4) = P(X=2) = \frac{1}{5} P_Y(6) = P(2|X| = 6) = P(X=3) = \frac{1}{5}

So we have P_Y(k) =  \begin{cases}<br>\dfrac{1}{5} &  k = 0,4,6\\[10pt]<br>\dfrac{1}{5} &  k =2 \\[10pt]<br>0 & \text{otherwise}<br>\end{cases}

The Expected Value of a Function of a Random Variable

The law of the unconscious statistician (or LOTUS) is a theorem which states that the expected value of a function of a random variable, or E[g(x)], can be expressed using the probability mass function of X (without needing the find the PMF of g(x)!). For a discrete random variable, this is expressed at E[g(x)] = \sum_{x_k \in R_X} g(x_k) P_X(x_k)

Example 3.17: Let X be a discrete random variable with R_X = \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi \} where P(0) = P(\frac{\pi}{4}) = P(\frac{\pi}{2}) = P(\frac{3\pi}{4}) = P(\pi) = \frac{1}{5}. Find E[\sin(X)].



Solution: Using LOTUS, we have E[g(x)] = \sum_{x_k \in R_X} g(x_k) P_X(x_k) = \sin(0) \cdot \frac{1}{5} + \sin\left(\frac{\pi}{4}\right) \cdot \frac{1}{5} + \sin\left(\frac{\pi}{2}\right) \cdot \frac{1}{5} + \sin\left(\frac{3\pi}{4}\right) \cdot \frac{1}{5} + \sin(\pi) \cdot \frac{1}{5} = \frac{\sqrt{2}+1}{5}

Example 3.18: Prove E[aX+b] = aEX + b.



Solution: Here, g(x) = aX + b, so we can use LOTUS to get: E[aX+b] = \sum_{x_k \in R_X} (ax_k + b) P_X(x_k) = a \sum_{x_k \in R_X} x_k P_X(x_k) + b \sum_{x_k \in R_X} P_X(x_k) = aEX + b \blacksquare

3.2.4 Variance

The variance of a random variable X with mean EX = \mu_X is defined as \text{Var}(X) = E[(X-\mu_x)^2]=\sum_{x_k \in R_X}(x_k - \mu_X)^2 P_X(x_k) The standard deviation, in turn, is defined as \text{SD}(X) = \sigma_X = \sqrt{\text{Var(X)}}

Theorem: Given a random variable X, \text{Var(X)} = E[X^2] - [EX]^2

Proof: We know, by the previous definition, that \text{Var(X)} = E[(X-\mu_X)^2] = E[X^2 - 2\mu_X X + \mu_X^2] Expanding this expression using Theorem 3.2, we get E[X^2] - 2\mu_X EX + \mu_X^2 = E[X^2] - 2 \mu_X^2 + \mu_X^2 = E[X^2] - \mu_X^2 = E[X^2] - [EX]^2 \blacksquare



Example 3.19 Say we roll and fair, 6-sided die, and let X be the resulting number. Find EX, \text{Var}(XX, and \sigma_X.



Solution: First of all, we know that R_X = \{1,2,3,4,5,6\} with P_X(k) = \frac{1}{6}, \quad k=1,2,3,4,5,6 Therefore, we have EX = \sum_{i=1}^6 i \cdot \frac{1}{6} = \frac{1+2+3+4+5+6}{6} = \frac{7}{2} Now we can calculate variance using \text{Var(X)} = E[X^2] - [EX]^2. First, we need to find E[X^2]. E[X^2] = \sum_{x_k \in X} x_k^2 P_X(x_k) = \sum_{i=1}^6 \frac{i^2}{6} = \frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2}{6} = \frac{91}{6} Now we can calculate E[X^2] - [EX]^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{2} \approx 2.92 Finally, we have \sigma_X = \sqrt{\text{Var}(X)} \approx \sqrt{2.92} \approx 1.71

Theorem 3.3: Given a random variable X and a,b \in \mathbb{R}, \text{Var}(aX+b) = a^2 \text{Var}(X)

Proof: Let Y = aX + b. From the previous section, we know that EY = aEX + b Therefore, using our original definition of variance \text{Var}(Y) = E[(Y-EY)^2] = E[(aX + b - aEX - b)^2] = E[a^2 (X-\mu_x)^2] = a^2 E[(X-\mu_X)^2] = a^2\text{Var}(X) \blacksquare



Theorem 3.4: If X_1, X_2, ..., X_n are independent random variables and X = X_1 + X_2 + ... + X_n then \text{Var}(X) = \text{Var}(X_1) + \text{Var}(X_2) + ... + \text{Var}(X_n)

Proof: \text{Var}(X) = \text{Var}\left(\sum_{k=1}^n X_k \right) = E \left[ \left( \sum_{k=1}^n X_k  - E\left( \sum_{k=1}^n X_k\right)\right)^2\right] = E \left[ \left( \sum_{k=1}^n  (X_k - \mu_{X_k})\right)^2\right] = E \left[ \sum_{1 \leq k \leq l \leq n} (X_kX_l - \mu_{x_k} X_l - \mu_{x_1} X_k - \mu_{x_k}\mu_{x_l})\right] =  \sum_{1 \leq k \leq l \leq n} \left(E[X_kX_l] - \mu_{X_k}\mu_{X_l} - \mu_{X_k}\mu_{X_l} +  \mu_{X_k}\mu_{X_l}\right) = \sum_{k=1}^n (EX^2_k - \mu_{x_k}^2) = \sum_{k=1}^n  \text{Var}(X_k) \blacksquare



Example 3.20: Let X \sim \text{Binomial}(n,p). Find Var(X).



Solution: Once again, we know that X = \sum_{k=1}^(n X_k where X_k \sim \text{Bernoulli}(p).



For each X_k, \text{Var}(X_k) = E[X^2_k] - [EX_k]^2 = 1^2 p + 0^2 (1-p) - p^2 = p(1-p) And so we have that \text{Var}(X) = \sum_{k=1}^n \text{Var}(X_k) = \sum_{k=1}^n p(1-p) = np(1-p) Hence, \text{Var}(X) = np(1-p).

3.2.5 Solved Problems

Problem 1: Let X be a discrete random variable with the following probability mass function:

P_X(x) =  \begin{cases}<br>0.3 &  x=3, 8\\[5pt]<br>0.2 &  x=5, 10\\[5pt]<br>0 & \text{otherwise}<br>\end{cases}

Find the cumulative distribution function of X.



Solution: The cumulative distribution function is defined by F_X(x) = P(X \leq x). So we have:

F_X(x) =  \begin{cases}<br>0 &  x<3 \\[5pt]<br>P_X(3) = 0.3  &  3 \leq x < 5\\[5pt]<br>P_X(3) + P_X(5) = 0.5 &  5 \leq x < 8\\[5pt]<br>P_X(3) + P_X(5) + P_X(8) = 0.8 &  8 \leq x < 10\\[5pt]<br>1 & x \geq 10<br>\end{cases}

Problem 2: Let X be a discrete random variable with the following probability mass function:

P_X(k) =  \begin{cases}<br>0.1 &  k=0\\[5pt]<br>0.4 &  k=1\\[5pt]<br>0.3 &  k=2\\[5pt]<br>0.2 &  k=3\\[5pt]<br>0 & \text{otherwise}<br>\end{cases} (a) Find EX.

(b) Find Var(X).

 (c) Let Y = (X-2)^2 and find EY.



Solution:



(a) EX = \displaystyle \sum_{x_k \in R_k} x_k P_X(x_k) = 0(0.1) + 1(0.4) + 2(0.3) + 3(0.2) = 1.6



(b) First we need to find E[X^2]: E[X^2] =  0^2(0.1) + 1^2(0.4) + 2^2(0.3) + 3^2(0.2) = 3.4 Now we have \text{Var}(X) = 3.4 - (1.6)^2 = 0.84 (c) Using LOTUS, we know that E[(X-2)^2]  = \sum_{x_k \in R_X} (x_k-2)^2 P_X(x_k) = (0-2)^2 (0.1) + (1-2)^2 (0.4) + (2-2)^2 (0.3) + (3-2)^2 (0.2) = 1

Problem 3: Let X be a discrete random variable with the following probability mass function:

P_X(k) =  \begin{cases}<br>0.2 &  k=0, 1\\[5pt]<br>0.3 &  k=2, 3\\[5pt]<br>0 & \text{otherwise}<br>\end{cases}

Let Y = X(X-1)(X-2). Find the probability mass function of Y.



Solution: First, note that R_Y = \{ x(x-1)(x-2) : x=0,1,2,3\} = \{0,6\} Thus, P_Y(0) = P_X(0) + P_X(1) + P_X(2) = 0.7 P_Y(6) = P_X(3) = 0.3 So our probability mass function is P_Y(k) =  \begin{cases}<br>0.7 &  k=0\\[5pt]<br>0.3 &  k=6\\[5pt]<br>0 & \text{otherwise}<br>\end{cases}

Problem 4: Let X \sim \text{Geometric}(p). Find E\left[\dfrac{1}{2^X} \right].



Solution: The probability mass function of X is given by

P_X(k) =  \begin{cases}<br>pq^{k-1} &  k=1,2,3,...\\[5pt]<br>0 & \text{otherwise}<br>\end{cases}

where q = 1-p. So we have E\left[\frac{1}{2^X} \right] = \sum_{k=1}^\infty \frac{1}{2^k} P_X(k) = \sum_{k=1}^\infty \frac{1}{2^k} pq^{k-1} = \frac{p}{2}\sum_{k=1}^\infty \left(\frac{q}{2}\right)^{k-1} = \frac{p}{2} \left( \frac{1}{1-\frac{q}{2}} \right) = \frac{p}{1+1-q} = \frac{p}{1+p}

Problem 5: Let X \sim \text{Hypergeometric}(b,r,k). Find EX.



Solution: The probability mass function of X is given by

P_X(k) =  \begin{cases}<br>\cfrac{\binom{b}{x} \binom{r}{k-x}}{\binom{b+r}{k}} &  k \in R_X\\[15pt]<br>0 & \text{otherwise}<br>\end{cases}

where R_X = \{\text{max}(0,k,r),..., \text{min}(k,b)\}.



Define the indicator random variables as X_i = \begin{cases}<br>1 &  \text{if the ith chosen marble is blue} \\[5pt]<br>0 & \text{otherwise}<br>\end{cases} where i = 1,2,...,k



So we can write X = X_1 + X_2 + ... + X_K which implies that EX = EX_1 + EX_2 + ... + EX_K Now, we have that for each i, P(X_i=1) = \frac{b}{b+r} so we can deduce that EX_i = 0 \cdot P(X_i = 0) + 1 \cdot P(X_i = 1) = \frac{b}{b+r} Finally we have EX = \sum_{i=1}^k \frac{b}{b+r} = \frac{kb}{b+r}

Problem 6: Show that if X \sim \text{Binomial}(n,p), then EX = np.



Solution: EX = \sum_{k=0}^n k \binom{n}{k} p^k q^{n-k} = \sum_{k=1}^n k \binom{n}{k} p^k q^{n-k} n \sum_{k=1}^n k \binom{n-1}{k-1} p^k q^{n-k} = np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k q^{n-(k+1)} = np(p+q)^{k-1} = np

Problem 7: Let X be a discrete random variable with R_X = \{0,1,2,...\}. Prove that EX = \sum_{k=0}^{\infty} P(X>k)

Solution: First, note that P(X>0) = P_X(1) + P_X(2) + P_X(3) + P_X(4) + ... P(X>1) = P_X(2) + P_X(3) + P_X(4) + ... P(X>2) =  P_X(3) + P_X(4) + ... and so on.



Thus, \sum_{k=0}^{\infty} P(X>k) = P_X(1) + 2P_X(2) + 3P_X(3) + 4P_X(4) + ... = \sum_{k=0}^{\infty} k P_X(k) = EX

Problem 8: Let X \sim \text{Poisson}(\lambda). Find Var(X).



Solution: In Example 3.13, we showed that EX = \lambda. Therefore \text{Var}(X) = E[X^2] - \lambda^2. Standard wisdom would tell us to next find E[X^2], but let’s instead find E[X(X-1)] for reasons that will be clear in a moment. E[X(X-1)] = \sum_{k=0}^{\infty} k(k-1) P_X(k) = \sum_{k=0}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \lambda^2 \sum_{k=2}^{\infty} \frac{ \lambda^{k-2}}{(k-2)!} = e^{-\lambda} \lambda^2 \sum_{k=0}^{\infty} \frac{ \lambda^{k}}{k!} = e^{-\lambda} \lambda^2 e^{\lambda} = \lambda^2 So now we have \lambda^2 = E[X(X+1)] = E[X^2] - EX = E[X^2] - \lambda \Rightarrow E[X^2] = \lambda^2 + \lambda Finally, we can plug everything into our formula to get \text{Var}(X) = E[X^2] - [EX]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda

Problem 9: Let X and Y be two independent random variables. Suppose that we know \text{Var}(2X - Y) = 6 and \text{Var}(X + 2Y) = 9. Find Var(X) and Var(Y).



Solution: We have that \text{Var}(2X - Y) = \text{Var}(2X) + \text{Var}(Y) =  4\text{Var}(X) + \text{Var}(Y) = 6 and \text{Var}(X + 2Y) = \text{Var}(X) + 4 \text{Var}(Y) =  9 Setting up a system of equations, we can solve for \text{Var}(X) =1 and \text{Var}(Y) =2